

Green Epoxy Resin System Based on Lignin and Tung Oil and Its Application in Epoxy Asphalt

Ran Li & Junna Xin & Jinwen Zhang

School of Mechanical and Materials Engineering Composite Materials and Engineering Center Washington State University

Aug 10 2017

- Background
- Partially depolymerization of lignin
- Preparation and characterization of lignin based epoxy monomer
- Preparation and characterization of epoxy asphalt
- Conclusions

Background

Rutting

Conversion of Lignin

Modification of lignin

Partial depolymerization via mild hydrogenolysis

WASHINGTON STATE

Xin J, Zhang P, Wolcott M P, et al. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel[J]. Bioresource technology, 2014, 155: 422-426.

Effect of reaction parameters on yield

Effects of temperature (a) and catalyst content (b) on yield of hydrogenation of enzymolysis lignin. Reaction conditions: lignin/solvent = 15 mg/mL, H₂ pressure = 2.0 MPa, t = 3.5 h, Raney Ni Conc. = 13.3% (a), T = 160 °C (b).

Xin J, Zhang P, Wolcott M P, et al. Partial depolymerization of enzymolysis lignin via mild hydrogenolysis over Raney Nickel[J]. Bioresource technology, 2014, 155: 422-426.

Solubility of lignin before and after hydrogenolysis

Lignin

Depolymerized lignin

Lignin

Depolymerized lignin

THF DMSO Pyridine NaOH sol

Concentration: 300mg/10mL NaOH Sol. = NaOH 3% in dioxane/water (1/1, v/v)

³¹P NMR characterization

Structure	³¹ P NMR (ppm)	Hydroxyl value (mmol/g)		
		160 °C	180 ° C	200 °C
Aliphatic	145.5-150.0	0.81	0.71	0.66
Aromatic	136.6-144.7	2.40	2.68	3.22
Carboxylic	133.6-136.6	0.37	0.44	0.50
Total		3.58	3.83	4.38

Molecular weight of PDL

Hydrogenolysis Temp.	Mw (g/mol)	Mn (g/mol)	Mw/Mn	
140 °C	991	714	1.39	
160 °C	1359	804	1.69	
180 °C	1147	764	1.50	
200 °C	959	719	1.33	

Preparation of Lignin (PDL)-derived epoxy monomer

Xin J, Li M, Li R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2754-2761.

³¹P NMR characterization of PDL-epoxy monomers

	Hydroxyl value (mmol/g)			Total	
	Aliphatic	Aromatic	Carboxylic	IUlai	
PDL-epoxy-117 °C	2.7	0	0	2.7	
PDL-epoxy-70 °C	2.4	1.7	0	4.1	
PDL	0.7	3.7	0.3	4.7	

Preparation of Lignin (PDL)-derived epoxy based epoxy resin

Xin J, Li M, Li R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2754-2761.

Thermal mechanical properties and thermal stability

WASHINGTON STATE

 $T_{5\%}$ and $T_{10\%}$ - temperature of 5% degradation and 10% degradation.

Application of Lignin (PDL)-derived epoxy for epoxy asphalt

Xin J, Li M, Li R, et al. Green epoxy resin system based on lignin and tung oil and its application in epoxy asphalt[J]. ACS Sustainable Chemistry & Engineering, 2016, 4(5): 2754-2761.

Effects of epoxy resin contents on the rheological properties of modified asphalt blends by PDL-epoxy and DER332.

	*High-performance grade (PG, °C)		
Sample	7.5 %	15 %	22.5 %
DER332/ME-MA	84	89	94
PDL-epoxy/ME-MA	78	84	>100

The temperature at which G/sin δ is equal to 1 kPa (Strategic Highway Research Program (SHRP) tests

Effects of epoxy resin contents on the rheological properties of modified asphalt blends by PDL-epoxy and DER332.

Conclusions

- Lignin can be partially depolymerized to yield low MW oligomers by hydrogenolysis under the catalysis of Raney Ni in alkaline solution of mixed dioxane/H₂O solvent or base catalyzed depolymerization in methanol under moderate temperature and pressure.
- The resulting PDL can be effectively turned into epoxy monomer by reacting with epicholorhydrin.
- Addition of epoxy resin has improved the high temperature performance and viscoelasticity of the asphalt binder.
- The properties of epoxy asphalt increased with the increasing of the epoxy resin contents.
- By varying the epoxy resin content, rheological properties of the modified asphalt can be greatly regulated.

Acknowledgements

Contributors

- Junna Xin
- Mei Li
- Pei Zhang
- Jinwen Zhang

Financial support

- Northwest Advanced Renewables Alliance (NARA), was funded by the Agriculture and Food Research Initiative Competitive Grant no. 2011-68005-30416 from the USDA National Institute of Food and Agriculture.
- The Federal Highway Administration (FHWA). Grant no. DTFH61-12-R-00056

