

Graphene Oxide Modified Fly Ash Pervious Concrete

Xianming Shi, Ph.D., P.E. Gang Xu, M.Sc., P.E.

Department of Civil & Environmental Engineering Washington State University

August 10, CESTiCC Summer Workshop, Pullman, WA

Background

- Cement industry accounts for ~
 5% of global CO₂ emissions.
- The U.S. generated approximately 70 million tons of fly ashes in 2014, only 27% were recycled.

Cement Production (photo by Shaila Dewan)

Air pollution from fly ash

(photo by Shaila Dewan)

Coal ash spill in Tennessee

(photo by Shaila Dewan)

Fly Ash Composition

	Cement	Fly ash			
Specific gravity	3.2	2.7	WA ash	MT ash	
Bulk Density (lbs/ft ³)	76	54	3 W nington	Montana	North Dakota
SiO ₂ (wt. %)	21	23.5	OR ash		
CaO (wt. %)	65	23.2	Idaho	Wyoming	South Dakota
Al_2O_3 (wt. %)	4	13.8	Nevada Utah	L	Nebraska
Fe_2O_3 (wt. %)	3.5	4.8	California	Colorado	Kansas
MgO (wt. %)	0.2	4.2	Arizona		Oklał

Alaska

Texas

- 1. <u>Chemical Composition</u> The contents of principal oxides are usually SiO_2 , Al_2O_3 , Fe_2O_3 , CaO, MgO, K_2O , Na_2O and SO_3 .
- 2. <u>Minerology Composition</u>

Fly ash has approximately 316 individual minerals and 188 mineral groups.

Turning Fly Ash into a Green Binder

Chemical activators enhance fly ash hydration

Secondary Electron Imaging (SEI) Analysis

Chemically Activated Fly Ash Mortar

SEI (left); BSE (right) micrographs

Xu, G., <u>Shi, X.</u> Exploratory Investigation into A Chemically Activated Fly Ash Binder for Mortars. <u>ASCE Journal of Materials in Civil</u> <u>Engineering</u>, 2017, in press.

Function of graphene oxide in OPC

BSE micrographs of OPC paste at 28-d

Graphene Oxide (GO) Modified Mortar

Ultrasonification of GO suspension

Molecular model of GO (Lv et al. 2014)

SEI image of cement hydrates at 7-days: (a) flower-like shape with 0.01% GO; (b) polyhedron-like shape with 0.05% GO (Lv et al. 2014)

GO-Modified Fly Ash Mortar

Cement mortar (left); GOmodified fly ash mortar (middle); fly ash mortar (right)

	0.03% GO- modified fly ash mortar	Regular fly ash mortar	f_c 'increase
7-day f _c ' (psi)	3353	2705.9	24%
14-day f _c ' (psi)	4688	3721.1	26%
28-day f' _c	5998 psi (41.4 MPa)	4878 psi (33.6 MPa)	23%

Following ASTM C39/39M

Fly ash mortar (left); GO-modified fly ash mortar (right)

Mortar Setting Time Test

Following ASTM C403/403M

similar setting time as cement.

Concrete Pocket Penetrometer

Mortar Workability Test

Following ASTM C230/230M

- 1. HRWR is not effective for fly ash binder due to LOI content.
- 2. F-500 Encapsulate Agent shows the ability to increase the workability of fly ash mortar.
- 3. 1% F-500 is able to produce the similar workability as cement (with same w/b ratio).

Pervious Concrete is a LID Tool

Developing Pervious Concrete with Fly Ash Binder

Mix Design	Agg. Size (inch)	Cem ent (kg/ m ³)	Fly ash CFA1 (kg/ m ³)	Water (kg/ m ³) [w/b]	Na SO ₄ (kg/ m ³)	CaO (kg/ m ³)	CaCl ₂ (kg/ m ³)	Water Glass (kg/ m ³)	GO (g/100 kg binder)	HRWR (ml/100 kg binder)	AE (ml/100kg binder)
Cement	3/8	320		80 [0.25]						300	30
Cement + GO	3/8	320		80 [0.25]					96	300	30
Fly ash	3/8		358	97 [0.27]	3.6	17.9	3.6	25		1000	30
Fly ash + GO	3/8		358	97 [0.27]	3.6	17.9	3.6	25	108	1000	30

Fabrication of GO-FA-Pervious Concrete

Pervious concrete 4"X8" cylinders (left to right) cement, cement + GO, fly ash, fly ash + GO (a): cylinders with capping (b): Close-up view of surface

(a)

Workability of Pervious Concrete

Superpave gyratory compactor. (proposed by Kevern et al.)

Workability (WEI)						
High workability	WEI > 640					
Acceptable workability	640 > WEI > 600					
Poor workability	WEI < 600					
Compactability (CDI)						
Self-consolidating	CDI < 50					
Normal compaction effort required	50< CDI < 450					
Considerable additional compaction effort required	CDI > 450					
· · · · · · · · · · · · · · · · · · ·						

Density and Void Ratio

concrete at 28 days

Compressive and Split Tensile Strength

Young's Modulus

Abrasion Resistance

□ (Abrasion) Degradation test results on 90-day

Sample before and after the test

Weight Loss (%)

Freeze-deicer Salt Scaling Resistance Test

Pervious concrete samples before freeze-deicer salt scaling test

Cement + GO

Fly ash + GO

Weight loss during salt scaling test

Samples after the 3rd cycle during test

Freeze-Thaw + Wet/Dry

Following ASTM C666/666M

Fly ash after 96 cycles

Cement after 96 cycles

Salt Exposure + Wet/Dry

Following ACI Test

Fly ash after 4 Cement after cycles 4 cycles

²⁹Si NMR Spectra Comparison

²⁷AI NMR Spectra Comparison

Fly ash hydrates

Great peak area of AI(IV) from fly ash itself and C-A-S-H hydrates. AI (IV) acts as reservoir to improve the resistance to sulfate attack.

Cement hydrates

Most of AI present as AI(VI) in AFt and TAH (amorphous AI hydroxide). No enough AI reservoir for later sulfate attack.

Summary

- □ A preliminary assessment showed that the fly ash binder was able to produce a pervious concrete with desirable densities, void ratios, infiltration rates and mechanical strengths.
- □ Freeze-thaw and deicer resistance of fly ash pervious concrete are better than the cement pervious concrete.
- □ Work is ongoing to employ waste carbon fibers to further enhance the durability of fly ash pervious concrete in cold climate.

Summary (cont'd)

- □ 0.03 wt.% GO improved overall performance of fly ash pervious concrete, e.g. the 28-day f'_c of fly ash pervious concrete was improved by more than 50%.
- GO accelerated the fly ash hydration and promoted the formation of low-Quartz and Jennite-like hydrates.
- GO increase the degree of polymerization of fly ash hydrates.
- □ EPMA and NMR are powerful tools that can shed light on the hydration mechanism of fly ash and on the role of GO.

Xu, G., <u>Shi, X.</u> Graphene Oxide Modified Pervious Concrete with Fly Ash as the Sole Binder. <u>ACI Materials Journal</u>, 2017. Xu, G., <u>Shi, X.</u> Reaction mechanism of graphene oxide in a chemically activated fly ash binder, <u>Cement and Concrete Research</u>, 2017.

Acknowledgements

- Thanks for funding from CESTiCC and WSU Office of Commercialization
- □ Shi, X. and Xu, G. 2016. Fly ash cementitious compositions. Non-provisional Patent filed on 08/26/2016. PCT/US2016/049048.
- Shi, X. and Xu, G. 2016. Environmentally friendly pervious concrete with fly ash as a sole binder. Provisional Patent 62/330,427 filed on 05/02/2016.
- Shi, X. and Xu, G. 2015. 100% fly ash mortars. Provisional Patent 62/212,000 filed on 09/17/2015.
- □ BASF, Boral and Lafarge for donated materials
- Dr. Owen K. Neil, Dr. Mehdi Honarvarnazari, Jiang Yu, Sen Du, Jialuo He at WSU provided assistance in experiments

Questions?

Xianming Shi, PhD, PE Civil & Environmental Engineering Washington State University Sloan 101, PO Box 642910 Pullman, WA 99164-2910 Phone: 1-509-335-7088

<u>xianming.shi@wsu.edu</u>

Sustainable Transportation in Cold

http://public.wsu.edu/~xianming.shi/

Fly Ash Formation

General transformation of coal during combustion (Kutchko, 2006)

Coal fly ash as the sole binder?

- Goal: Use coal fly ashes to make a durable, clinker-free concrete
- Our recent work has confirmed the possibilities of using class C coal fly ash (without activation) as the sole binder to make concretes of moderate strength.

 w/b 0.20:
 28-d f'_c: 38 MPa;
 Surface resistivity: 130 KΩ.cm;
 E_{nano}: 39.4 GPa;
 K: 4.1*10⁻¹⁷ m²/s;
 D_{CL}: 1.9*10⁻¹² m²/s

Xie, N., <u>Shi, X.</u>, et al. Upcycling of Waste Materials: Green Binder Prepared with Pure Fly Ash. *ASCE Journal of Materials in Civil Engineering*, 2016, 28(3), DOI: <u>10.1061/(ASCE)MT.1943-5533.0001414</u>.

Coal fly ash as binder/aggregate?

Du, S., <u>Shi, X., Ge. Y. Electron Probe Microanalysis Investigation into High-</u> Volume Fly Ash Mortars. <u>ASCE Journal of Materials in Civil Engineering</u>, 2016, DOI: <u>10.1061/(ASCE)MT.1943-5533.0001854</u>.

GO-OPC: Elemental maps & SEM

Elemental maps (10x10 μ m) for selected sites at 28-d

(top) OPC paste; (bottom) OPC+GO paste

GO-induced crystalline Ca(OH)₂

GO Modified Fly Ash Mortar

EPMA (Electron probe micro-analyzer)

(a)

(b)

Element mapping (Ca and Si) (a) mortar without GO; (b) GO-modified mortar

GO in the hydration system

Croup	Modifier		Intermediates				Former		Bridging	
Group	С	a	Al		Fe		Si		S	
	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.	Mean	Std. dev.
OPC	14.3	1.39	3.85	2.52	0.58	0.69	15.3	4.40	0.42	0.18
OPC+GO	13.5	1.57	4.23	2.91	0.62	0.71	15.1	4.52	0.19	0.12
GO effect		+13%		+15%		+3%		+3%		-33%

1. The GO increased σ of Ca distribution by 13%. The boxplot also indicated that GO reduced the Ca-concentration.

2. The GO increased σ of AI and Fe distribution by 15% and 3% respectively. e.g., **repelling AI(OH)**₄-

3. The effect of GO on the Si distribution was considered weak (increased by 3%). This is due to the presence of neutral Si(OH)₄ units in addition to SiO(OH)₃⁻ and SiO₂ (OH)₂^{2⁻} anions, as the electronegative GO does not repel neutral Si(OH)₄ units.

Function of GO

- 1. Exclude the intermediates
- 2. Consume network modifiers
- 3. Not affect network formers

	Cement	Fly ash
SiO ₂ (wt. %)	21	23.5
Al_2O_3 (wt. %)	4	13.8
$\operatorname{Fe}_2\operatorname{O}_3(\operatorname{wt.}\%)$	3.5	4.8
CaO (wt. %)	65	23.2

Element	Function in structure
Ca	Network Modifiers
Fe Al	Intermediates
Si	Network Formers

Unlock the potential of fly ash!

NMR Instrument

Bruker Avance III 400MHz NMR machine (photo by Bruker Inc.)

²⁹Si NMR Study of Fly Ash Hydrates

²⁹Si NMR spectra at 56-day

²⁹Si NMR Coupling with EPMA

Jennite

5

0

²⁹Si NMR Coupling with XRD

²⁷AI NMR Study of Fly Ash Hydrates

²⁷Al NMR spectra at 56-day

