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EXECUTIVE SUMMARY 

This project measured cold start emissions from four vehicles in winter using fast 

response instrumentation to accurately measure the time variation of the cold start emission 

pulse. Seventeen successful tests were conducted over a temperature range of -4°C to 10°C in 

winter 2015 at the Washington State University campus. Vehicle cold starts are thought to be a 

significant source of air toxic compounds in cold winter environments due to the rapid increase 

in mass emission rates with decreasing temperature. While data exist for CO, NO, and total 

hydrocarbon emissions from federal testing procedures for vehicle emission certification, little is 

known about the emission rates of individual volatile organic compounds, in particular the air 

toxics benzene, formaldehyde, and acetaldehyde. We used a proton transfer reaction mass 

spectrometer for high time resolution measurement of the emission of these compounds, in 

addition to toluene and C2-alkylbenzenes (sum of xylene isomers plus ethylbenzene). Measured 

molar emission ratios relative to toluene in the cold start pulse were compared with cold start 

emission profiles for E10 fueled vehicles used in the EPA MOVES2014 model. We found that 

the measured acetaldehyde-to-toluene emission ratio was about a factor of 8 greater than the 

emission ratio used in MOVES2014. Measured formaldehyde-to-toluene emission ratios were a 

factor of 5 greater. The measured benzene-to-toluene and C2-alkybenzene-to-tolune emission 

ratios compared well with those used in MOVES. Our study suggests that emission of the air 

toxics acetaldehyde and, likely, formaldehyde is significantly underestimated in wintertime by 

the MOVES2014 model.  
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CHAPTER 1.  INTRODUCTION 

1.1 Problem Statement 

This project relates to CESTiCC’s fifth research thrust area, “environmental impact 

assessment” - specifically the unique effect of cold air temperatures on vehicle exhaust emissions 

and the resulting exposure of humans to air toxics. Exposure to vehicle exhaust emissions is a 

major cause of cardiovascular disease and a cancer risk factor (HEI 2010). Vehicle emissions 

models, such as the U.S. Environmental Protection Agency’s Motor Vehicle Emissions 

Simulator (MOVES) suggest that in cold climates, the majority of pollutant mass emitted by 

vehicles occurs during engine cold starts and idling, not when the vehicle is moving along the 

road. In winter, cold starts in combination with meteorological conditions that trap vehicle 

emissions under low-lying temperature inversions lead to significantly elevated pollutant 

concentrations. People living in colder climates are potentially exposed to significantly higher 

concentrations of air toxics than people who are living in warmer climates because of enhanced 

cold start and idling emissions and lower pollution dispersion rates. However, vehicle emissions 

data for cold climates are sparse, and the accuracy of vehicle emissions model parameterizations 

for air toxics in cold climates is not known. Clarifying the importance of vehicle cold start and 

engine idling emissions in cold climates is the focus of this study. 

1.2 Background 

Vehicle cold start emissions are said to occur when a vehicle’s engine and emission 

control equipment temperatures are at or near ambient air temperatures when the vehicle is 

started (EPA 2010). The engine and catalytic converters require time to warm up to normal 

working temperatures, which is about 110°C for engines and above 200°C for three-way 



3 

catalytic converters (Favez et al. 2009). Starting a vehicle after it has been off for 12 hours or 

more is considered a cold start, implying that after this time vehicle temperatures are similar to 

ambient conditions (Favez et al. 2009). Cold start emissions are a strong function of temperature. 

Emissions of carbon monoxide (CO) and volatile organic compounds (VOC) significantly 

increase with decreasing air temperature for temperatures below 75°F. Emissions of VOCs and 

CO are thought to be elevated during engine cold starts because of condensation of fuel on cold 

surfaces and because of colder, less efficient catalytic converters. Modern gasoline and diesel 

engine vehicles have very low running emissions, meeting increasingly stringent pollutant 

emission requirements set by the U.S. Environmental Protection Agency (EPA). Because of 

reduced running emissions, the relative importance of engine cold starts to overall vehicle 

emissions is increasing, particularly in cold environments. For example, field measurement work 

with the Idaho Department of Environmental Quality (IDEQ) and Washington State Department 

of Ecology on wintertime air quality issues in the intermountain west has identified vehicle 

emission cold starts as a major source of wintertime air pollution (Wallace et al. 2012), 

accounting for 50% of CO and VOCs emitted from vehicles in Boise, Idaho, in winter. 

In the United States, cold start emissions data come from Federal Test Procedure (FTP) 

conducted by manufacturers and the EPA to verify vehicle emission standards and fuel 

efficiency specifications. Emissions data for CO, nitrogen oxide (NOx), and total hydrocarbons 

are determined at three temperatures: 75°, 50°, and 20°F. Almost no testing has been done below 

20°F, and data on the emission of specific air toxic compounds (i.e., benzene, formaldehyde) are 

extremely limited. Information on particulate matter emissions at cold temperatures is also 

extremely limited for all test temperatures. In has been shown that extended idling after cold 

starts, a common practice in cold winter environments, prolongs the period of elevated emissions 
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of air toxic compounds (Sentoff et al. 2010). Engine starts during the morning rush hour produce 

a large pulse of air toxics emissions that become trapped under low-lying temperature inversions 

(a common occurrence in winter), producing high concentrations of pollutants and enhanced 

human exposure to disease-causing compounds. People living in colder climates may thus be 

experiencing much greater exposure to compounds that lead to cardiovascular disease and cancer 

than people living in warm climates, producing regional differences in the public health impact 

of vehicle emissions. 

The objective of our project was to compare emissions of the air toxic compounds 

benzene, formaldehyde, and acetaldehyde to the emissions used in MOVES, the primary model 

used in the United States and Canada for vehicle emissions inventory development for air quality 

modeling.  

1.3 Determination of Cold Start Emissions: Test Driving Cycles 

Vehicle emissions are determined by measuring exhaust composition from vehicles, 

using a chassis dynamometer to simulate driving conditions and real-world engine loads. A 

number of such dynamometer drive cycles are used worldwide to simulate urban driving 

conditions for vehicle emission testing purposes. In the United States, the Federal Test Procedure 

(FTP) is the standard drive cycle test method for emissions certification. The vehicle speed 

variation for FTP is shown in Figure 1.1. This cycle consists of three phases: a 505-second cold 

start phase, an 867-second stabilized phase, and a 505-second hot start phase. Phase 1 and Phase 

3 are identical drive cycles. Before the hot start phase, the vehicle is turned off for 10 minutes 

and then restarted. Note that during the FTP-75 cold start phase, the engine idles for only 20 

seconds before the vehicle speed is ramped up; the average speed is 25 mph for the first phase of 
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the test cycle. A more realistic scenario in cold climate winters is that the engine idles for several 

minutes to warm up the vehicle before it is driven. 

The emitted engine exhaust for each phase is sampled, often by whole air sample 

collection into Teflon bags, for determination of pollutant concentrations. Emission factors (units 

of grams / km) are calculated from the measured pollutant mixing ratios. The difference in 

concentration between the Phase 1 bag sample and the Phase 3 bag sample is attributed to extra 

emissions due to the engine cold start in Phase 1 and is reported in units of grams (EPA 2010).  

 

Figure 1.1 The FTP 75 drive cycle used for emission testing in the United 

States. The drive cycle is divided into 3 phases as indicated. Exhaust samples 

are either continuously measured or are collected into Teflon sampling bags 

at each phase for analysis of exhaust emissions. 

Cold start emissions vary, depending on the specific drive cycles test used, because of 

differences in idling time, vehicle speed during the first phase, and bag sampling time. 

Differences in the standard emission testing drive cycles used in Europe, Japan, and the United 
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States lead to differences in cold start emissions and, thus, the temperature dependence of these 

emissions (Laurikko 1995; Joumard et al. 2000; Weilenmann et al. 2005). For example, Laurikko 

(1995) compared the FTP-75 driving cycle with the ECE driving cycle used in Europe and found 

that the engine and the catalyst warmed more rapidly in the FTP-75 cycle than in the ECE cycle 

because of differences in vehicles speeds, resulting in lower emissions for the FTP test. Emission 

factors for CO and hydrocarbons for the ECE drive cycle test were about a factor of 2 larger than 

the FTP cycle emissions. 

1.4 Temperature Dependence of Cold Start Emissions 

Cold start emissions have been shown to be temperature dependent. Lower engine 

temperatures reduce combustion efficiency and prolong the time it takes to heat the catalytic 

converter to 200°C, the temperature required to be fully effective. Warm-up times have been 

measured by Bielaczyc et al. (2011), who showed that at 7°C, it takes a small-engine vehicle 

approximately 18 minutes to fully warm up.  

Much of the published research on engine cold starts has been conducted in Europe. We 

summarize a few notable publications here. Laurikko (1995) studied the temperature effect on 

three gasoline vehicles; cold start emissions were measured as the mass in grams of pollutant in 

the first bag of ECE cycle tests. About five times more CO and HC (hydrocarbons) were 

measured at -7°C compared with 22°C. Ludykar et al. (1999) tested gasoline vehicles at three 

levels of ambient temperature including +22°C, -7°C, and -20°C. Hydrocarbon emissions 

increased with decreasing temperature; emissions at -20°C were 14.7 times higher than 

emissions at 20°C, while CO emission factors increased by a factor of 2.6. Weilenmann et al. 

(2005) tested gasoline vehicles under ambient temperatures of 23°C, -7°C, and -20°C, and 

showed that the average hydrocarbon extra emission was 26 g per start higher at -20°C than at 
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23°C. For CO, the extra emission was 182 g per start higher at -20°C compared with 23°C. 

Weilenmann et al. (2009) reported that cold start emissions at -20°C for CO were 15 times 

greater and for hydrocarbons were 30 times greater than cold start emissions at 23°C. 

Remarkably, these cold start mass emission rates at -20°C are equivalent to driving 5000 km 

(Weilenmann et al. 2009; Bielaczyc et al. 2011).  

1.5 Parameterization of Cold Start Emissions in MOVES 

Temperature effects of cold start emissions are parameterized in MOVES based on “bag 

data” collected by FTP and LA-92 drive cycle testing (EPA 2010). Emissions are enhanced for 

temperatures less than 75°F and have been parameterized based on fits to data collected at 

temperatures from 0°F (-18°C) to 75°F (24°C) due to anomalous data at -20°C skewing the fits 

for warmer temperature trends (EPA 2010). The resulting cold start emission-enhancement 

factors have the following temperature dependence for model years 1990 to 2005, where 

temperature (T) is in degrees F (EPA 2010): 

CO = 1.1141434 * (T – 75) 

total hydrocarbons = 0.00292424 * (T – 75)2 

NOx = 0.009431682 * (T – 75) 

The temperature dependence for total hydrocarbon (THC) emissions is non-linear. The THC 

metric includes methane and all organic compounds that respond to a flame ionization detector 

(FID), including oxygenate compound. It is assumed that all compounds have the same carbon 

atom response factor as propane (EPA 2015). Carbon monoxide and total hydrocarbon and 

emissions enhancements increase rapidly with decreasing temperature, as illustrated in Figure 

1.2. The CO emission enhancement factor at 0°C is 48, while for total hydrocarbons it is a factor 

of 5.4. At -20°C, the CO enhancement factor is 88, while for hydrocarbons it is a factor of 18. It 
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is not clear if emission factors for all hydrocarbons are increased by the same amount. Very little 

information is available on speciated hydrocarbon cold start emissions.  

 

Figure 1.2 Variation of cold start emission-enhancement factors with temperature 

as parameterized in MOVES for 1995–2000 light duty vehicles. Enhancements 

are relative to cold start emissions at 75°F. 

1.6 Organic Compound Speciation of Cold Start Emissions in MOVES 

In the latest MOVES version, MOVES2014, cold start emissions of gas phase organic 

compounds have the same speciation profile as running emissions (EPA 2015). There is no 

accounting for relative compositional changes in the emission profile as a function of engine load 

or cold start temperature. The EPA speciation profile used for cold starts and running emission 

for Tier 2 vehicles operating with E10 fuel is profile #8757. The top 25 compounds (out of 120 

listed) in this profile, accounting for 85% of total mass emissions, are given in Table 1.1. 

Compounds were measured in this project and are highlighted in bold. For pre Tier 2 vehicles, 
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speciation profile 8751a (E10 fuel) is used, and the top 25 compounds, accounting for 77% of 

total mass emissions, are listed in Table 1.2. For diesel engine vehicles, EPA speciation profile 

8775 is used for cold starts and running emissions (EPA 2015), and the top 25 compounds (out 

of 83 listed) in the profile, accounting for 92% of the mass emissions, are listed in   
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Table 1.3. 

Table 1.1 Speciation Profile #8757 used in MOVES2014 to represent cold start 

and running emissions from Tier 2 vehicles operating on E10 fuel. Identification 

of compounds as hazardous air pollutants (HAPS) by the EPA is noted. Bold type 

indicates compounds measured in this project. 

Ranking Compound Weight % HAPS 

1 Methane 17.36  

2 Ethylene  10.05  

3 Toluene  7.44 Y 

4 Cyclohexane  5.62  

5 p-xylene & m- xylene  4.35 Y 

6 Propylene  3.99  

7 Ethyl alcohol  3.81  

8 Benzene  3.79 Y 

9 N-butane  3.55  

10 N-hexane 2.91 Y 

11 Ethane  2.70  

12 C9-C12 isoalkanes 2.18  

13 Isobutylene  1.92  

14 o-xylene  1.70 Y 

15 Ethylbenzene  1.66 Y 

16 Acetylene  1.65  

17 Acetaldehyde  1.61 Y 

18 1-Methyl-3-ethylbenzene  1.35  

19 2,2,4-trimethylpentane  1.23 Y 

20 1,2,4-trimethylbenzene + 

1,3,4-trimethylbenzene 
1.14 

 

21 3-methylpentane  1.14  

22 2-methylpentane  1.01  

23 1,3-butadiene  0.89 Y 

24 Formaldehyde  0.87 Y 

25 1-butene  0.68  
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Table 1.2 Speciation Profile #8751a used in MOVES2014 to represent cold start 

and running emissions from pre Tier 2 vehicles operating on E10 fuel. 

Identification of compounds as hazardous air pollutants (HAPS) by the EPA is 

noted. Bold type indicates compounds measured in this project. 

Ranking Compound Weight % HAPS 

1 Methane 14.16  

2 Toluene  7.77 Y 

3 Ethylene  5.96  

4 Isopentane  5.35  

5 p-xylene & m-xylene  4.89 Y 

6 Benzene  4.14 Y 

7 Propylene  3.86  

8 Acetylene 3.27  

9 Ethane 2.34  

10 2,2,4-trimethylpentane  2.24 Y 

11 2-methylpentane  2.08  

12 1-butene & isobutene  2.07  

13 O-xylene  1.88 Y 

14 Ethylbenzene  1.86 Y 

15 1,2,4-trimethylbenzene + 

1,3,4-trimethylbenzene 
1.63 

 

16 3-methylpentane  1.60  

17 Ethyl alcohol 1.58  

18 N-hexane  1.50 Y 

19 1-Methyl-3-ethylbenzene  1.43  

20 N-pentane  1.40  

21 Formaldehyde  1.36 Y 

22 Acetaldehyde  1.27 Y 

23 2-methylhexane  1.19  

24 3-methylhexane  1.14  

25 2,3-dimethylpentane  1.13  
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Table 1.3 Speciation Profile #8775 used in MOVES2014 to represent cold start 

and running emissions from post 2007 diesel engine vehicles. Identification of 

compounds as hazardous air pollutants (HAPS) by the EPA is noted. Bold type 

indicates compounds measured in this project. 

Ranking Compound Weight % HAPS 

1 Methane 51.64  

2 Formaldehyde  10.05 Y 

3 unknown 4.35  

4 Acetaldehyde  3.36 Y 

5 Ethylene 3.07  

6 N-dodecane  2.34  

7 N-undecane  1.75  

8 Ethane 1.34  

9 Toluene  1.24 Y 

10 N-butane  1.10  

11 p-xylene & m-xylene 1.04 Y 

12 N-pentane  1.01  

13 Isobutylene 0.97  

14 Propylene  0.94  

15 Methylcyclohexane  0.89  

16 Benzaldehyde  0.79  

17 Acetone 0.76  

18 1,2,4-trimethylbenzene + 

1,3,4-trimethylbenzene 
0.75 

 

19 2,2-dimethylpropane 0.68  

20 2,2-dimethylhexane 0.66  

21 o-xylene  0.65 Y 

22 Benzene  0.61 Y 

23 Acetylene (ACETYL) 

[PAMS] 
0.58 

 

24 2,3,4-trimethylpentane  0.54  

25 2,3,3-trimethylpentane 0.52  
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CHAPTER 2.  PROCEDURE 

Vehicle cold start emissions were investigated for the four-spark ignition vehicles listed 

in Error! Reference source not found.. No dynamometer was used in the testing. The 

rocedure simply involved starting the vehicle and measuring how exhaust concentration changed 

with time as the car idled. Exhaust was sampled using fast response continuous monitors for CO, 

NOx, carbon dioxide (CO2), and volatile organic compounds (VOCs), with data collection 

frequency of 1 Hz. Measurements were conducted at Washington State University (WSU) during 

winter 2015 inside an unheated storage building. Instruments were housed inside a temperature-

controlled field trailer within the building. Vehicles were stored inside the building overnight, 

and emissions tests were conducted in the early morning. Figure 2.1 is a photograph showing the 

storage building with two of the test vehicles inside. Behind the vehicles is the field trailer that 

housed the measurement equipment. 

Table 2.1 Vehicles tested in this study and emission factor legislation 

 Regulatory emission rates (g/mi) 

10 years/100 K miles 50K miles 

Made Model Year 

Engine 

size 

(L) 

Tier CO NOx PM HCHO 
Cold start 

CO 

Ford Mustang 1995 5 1 4.2 0.6 0.1 - - 

Honda  Civic 1996 1.6 1 4.2 0.6 0.1 - - 

Pontiac Vibe 2004 1.6 2 4.2 0.07 0.01 0.018 10 (@-7°C) 

Subaru Forester 2015 2.5 2 4.2 0.07 0.01 0.018 10 (@-7°C) 
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Figure 2.1 Photograph of the cold start testing facility at WSU, showing vehicles 

and the field trailer that housed the monitoring equipment 

Table 2.2 lists the instrumentation used to measure CO, NOx, CO2, and speciated VOCs. 

Unique to this project was the use of fast-responding instrumentation to measure CO, NOx, and 

VOCs. Initially, we used a slower responding NOx analyzer (TECO 42C), but switched to the 

faster responding Air Quality Design instrument on February 21, 2015, when the instrument 

became available. Thus, about half the experiments were done with TECO 42C, and these data 

are not useful. Several different VOCs could be measured in real time using a proton-transfer-

reaction mass spectrometer (PTR-MS), which allowed us to measure formaldehyde, 

acetaldehyde, toluene, and benzene, key hazardous air pollutants and air toxic compounds. With 

this instrument, rapid changes in exhaust composition could be followed as the engine and 

catalytic converter warmed up. Temperatures were measured with Type K thermocouples. The 

engine temperature was measured by putting the thermocouple close to the engine surface. Two 

temperature loggers (OMEGA) were used to record the real-time temperature of the exhaust and 
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the outside temperature of the catalytic converter with a frequency of 1 second. The 

thermocouple for the exhaust measurement was put in the center of the tailpipe. 

Table 2.2 Instrumentation used to measure exhaust composition 

Pollutant Instrument Manufacturer Response 

time 

Carbon monoxide (CO) Vacuum UV CO Aerolaser 

GmBH 

< 1 second 

Nitrogen oxides (NOx) TECO 42C  Thermoelectron 

Corp 

40 second 

Nitrogen oxides (NOx) 2-channel NOxy Air Quality 

Design 

~ 1 second 

Volatile organic 

compounds (VOCs) 

PTR-MS Ionicon Analytik ~1 second 

Carbon dioxide (CO2) LiCor 840a LiCor < 1 second 

 

The PTR-MS identifies compounds by molecular weight via chemical ionization by 

H3O
+. We have used this instrument in air-quality field experiments and exhaust sampling 

studies over the last 10 years (Jobson et al. 2005; Jobson et al. 2010; Erickson et al. 2014). The 

instrument was set to measure a few selected compounds that are abundant in exhaust and that 

are reliably measured with this technology: formaldehyde, acetaldehyde, acetone, and propanal, 

benzene, toluene, C2-alkylbenzenes (this includes the xylene isomers + ethylbenzene), and C3-

alkylbenzenes (ethyl toluene isomers + trimethyl benzene isomers + i-propyl and n-propyl 

benzene). The PTR-MS response was calibrated using an external compressed air standard (Scott 

Marrin), containing these components and others with a stated concentration accuracy of ±5%. 

The standard was diluted with humidified zero air to obtain mixing ratios of 20 ppbv (parts per 

billion by volume) to determine the instrument response factors. The instrument response to 

formaldehyde was determined using a permeation device (Kin Tek).  

Carbon monoxide was measured using a vacuum ultraviolet (UV) fluorescence 

instrument (Aerolaser, Germany), and the response was calibrated with a compressed gas CO 
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standard (Scott Marrin, 1% accuracy). Nitrogen oxide (NOx) measurements were made using a 

Thermolectron model 42C instrument and a fast response two-channel NOx instrument from Air 

Quality Design. The instruments were spanned using an NO compressed gas standard (Scott 

Marrin, 1% accuracy) diluted with dry zero air. The LiCor 840a CO2 monitor was factory 

calibrated. 

Vehicle exhaust was sampled using an ejector diluter (Air-Vac TD110HSS). A zero 

airflow of 20 L min-1 was forced through the ejector diluter, creating a vacuum that pulled a 

smaller flow of air from the exhaust. The zero airflow was regulated with a mass flow controller 

(MKS Instruments). The sample flow pulling exhaust into the ejector diluter was controlled by 

using a variable length of 0.030″ ID by 1/16″ OD tubing, specially coated to make it chemically 

inert (Restek). This capillary tubing restricted the flow of exhaust into the ejector diluter. The 

exhaust flow was thus diluted by the ratio of the sample flow divided by the 20 L min-1 zero 

airflow. Exhaust dilutions that spanned a range of 100 to 1000 were used in the experiments. 

Dilution was necessary to ensure that measured mixing ratios were within the analytical response 

range of the instruments. The air exited the ejector diluter and flowed through ½″ OD PFA 

Teflon tubing to the field trailer, where it was sub-sampled by the respective analyzers. A 

schematic of the setup is shown in Figure 2.2. The 1/16″ sample line and ejector diluter were 

wrapped with a heating cord to warm them and prevent water condensation. The sample line was 

heated to 100°C, and the ejector diluter was heated to 60°C. A stainless steel filter was attached 

to the 1/16″ sample line to remove particles. The filter was difficult to heat effectively and may 

have caused losses of some compounds due to condensation of water on its surfaces. 
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Figure 2.2 Schematic of exhaust sampling, illustrating use of an ejector diluter 

 

2.1 Cold Start Test Procedure 

The 1/16″ OD sampling line was inserted about 4″ into the tail pipe, and the zero airflow 

was set to 20 L min-1. The heating cords were turned on, and the lines and ejector diluter were 

allowed to rise to temperature. The analyzers then recorded “background” data for about 10 

minutes. This background data are simply ambient air diluted by zero airflow. The temperatures 

of the engine and catalytic converter were recorded during this period. After the background data 

period, the vehicle was started and left idling until exhaust concentrations of CO, CO2, NOx, and 

hydrocarbons reached a steady state, typically 20 minutes.  
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CHAPTER 3.  RESULTS 

3.1 Testing Conditions 

Seventeen tests were conducted on four different vehicles. The ignitions of all vehicles 

employed in this experiment were off for more than 12 hours before testing began. Two of the 

vehicles tested, the 2004 Pontiac Vibe and the 2015 Subaru Forester, were tested under a 

reasonably wide range of temperatures, from -4.3°C to 10.4°C and from 0.6°C to 4.6°C, 

respectively. During the relatively warm winter in Pullman, Washington, in 2015, colder 

temperatures did not occur, and most data collected were within 5°C of the freezing point. Table 

3.1 lists the tests and start temperatures conducted in February and March 2015. 

Table 3.1 List of cold start experiments showing start temperature and 

exhaust dilution factor 

Test # Date Vehicle 
Temp 

(°C) 

Dilution 

factor 

1 5 Feb Pontiac Vibe 2004 10.4 3180 

2 11 Feb Pontiac Vibe 2004 6.8 2565 

3 13 Feb Pontiac Vibe 2004 7.5 1880 

4 18 Feb Pontiac Vibe 2004 2.1 1317 

5 19 Feb Pontiac Vibe 2004 3.5 1300 

6 20 Feb Mustang GT 1995 6.7 1350 

7 21 Feb Honda Civic 1996 3.0 603 

8 21 Feb Ford Mustang GT 1995 3.6 960 

9 23 Feb Ford Mustang GT 1995 -0.9 1018 

10 24 Feb Subaru Forester 2015 0.6 1160 

11 26 Feb Subaru Forester 2015 4.6 980 

12 27 Feb Subaru Forester 2015 2.6 1125 

13 28 Feb Subaru Forester 2015 1.3 190 

14 2 Mar Subaru Forester 2015 3.4 230 

15 3 Mar Pontiac Vibe 2004 -1.6 330 
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Test # Date Vehicle 
Temp 

(°C) 

Dilution 

factor 

16 4 Mar Pontiac Vibe 2004 -4.3 260 

17 6 Mar Pontiac Vibe 2004 3.4 215 

 

3.2 Carbon Monoxide and Nitric Oxide Data 

An example time series of the cold start CO and NO emissions from the Subaru Forester 

is illustrated in Figure 3.1. The measured mixing ratios were corrected for the dilution factor. 

Carbon monoxide abundance in exhaust reached a maximum of a few percent and then quickly 

declined to a steady-state mixing ratio of about 10 ppmv (parts per million by volume), 

representing idling emissions from a warmed-up vehicle. The excess CO above the 10 ppmv 

steady-state threshold was considered the cold start emission. From engine start to steady-state 

idling, CO levels of 10 ppmv took approximately 70 seconds for this vehicle. The short-lived 

pulse was well characterized by the fast response CO instrument. Elevated emissions of NO were 

even briefer, lasting about 40 seconds, and declining 3 orders of magnitude in a period of 60 

seconds to a steady-state engine idle mixing ratio of less than 0.1 ppmv.  
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Figure 3.1 Carbon monoxide (left panel) and nitric oxide (right panel) 

abundance in the exhaust of a 2015 Subaru Forester for 5 different cold start 

tests 

An estimate of the CO and NO mass emission per cold start was calculated by 

determining the area under the cold start concentration peak (units of mg m-3 s) and multiplying 

this value by the estimated exhaust flow rate (m3 s-1). The exhaust flow rate, given by equation 

(1), was estimated from the engine idle RPM, as indicated on the dashboard tachometer, and 

engine displacement of 2.5 L. 

Exhaust flow (m3 s-1) = 0.5 * RPM * 2.5 L* 0.0167 min s-1 * 10-3 L m-3 (1) 

Estimated mass emission values are shown in Table 3.2 for the Forester. No clear trend of 

CO emissions and temperature was apparent, in part because of the limited temperature range, 

though CO emissions varied by a factor of 3. The variability in CO emissions was greater than 

for NO, perhaps reflecting greater start-to-start variability due to the catalytic converter 

performance and the combustion process. Average CO mass emission was 10.5 g ± 40%. Nitric 
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oxide mass emission was less variable; average mass emission was 17.0 mg ± 22%. The average 

CO-to-NOx molar emission ratio was 654 ± 23%, far larger than typical roadway running 

emission ratios of 5 to 7 (Wallace et al. 2012. 

Table 3.2 Mass CO and NO emitted during engine cold start for the 2015 Subaru 

Forester 

Forester 

test date 

Temp. 

(°C) 

Dilution 

factor 

CO cold start 

mass emission 

(grams) 

NO cold start 

mass emission 

(mg) 

CO-to-NO 

molar 

emission ratio 

24 Feb 0.6 1160 17.3 21 891 

26 Feb 4.6 980 9.4 19 528 

27 Feb 2.6 1125 11.5 18 685 

28 Feb 1.3 190 7.8 16 521 

2 Mar 2.4 230 6.6 11 647 

 

The older Pontiac Vice (2004), like the Forester a Tier 2 emissions vehicle, displayed a 

rapid decline in CO emissions, as illustrated in Figure 3.2. Carbon monoxide emissions declined 

rapidly over about 60 seconds to a steady-state engine idle value of ~ 1200 ppmv. This value is 

much higher (factor of 100) than the Forester and indicates that the catalytic converter was not 

working as well. The NO emission profile was also different from the Forester; after an initial 

engine start pulse, concentrations briefly declined, only to rise to higher values, which slowly 

decreased over the course of the test. In this case, it was not clear what was considered a cold 

start emission of NO. 
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Figure 3.2 Cold start emission of CO (shaded blue trace) and NO (black trace) from a 

2004 Pontiac Vibe. Left panel shows data from the Mar. 4 test, and right panel, from the 

Mar. 6 test. Both tests show that CO emissions rapidly declined after ~ 60 seconds to 

steady-state idle concentrations of several hundred ppmv. The NO emissions displayed 

different temporal behavior, and NO displayed a secondary maxima after CO emissions 

declined. 

In contrast to the rapid decrease of CO observed for the Tier 2 vehicles, Figure 3.3 shows 

CO emission from a 1995 Ford Mustang GT. Carbon monoxide emissions took a much longer 

time to stabilize at ~ 170 ppmv (> 600 seconds), presumably due to the longer time it took for the 

catalytic converter to warm up to full efficiency, compared with the 2015 Subaru Forester. Note 

that CO emissions were a factor of 10 greater at idle than for the Forester, and a factor of 10 less 

at idle than for the Pontiac Vibe. Such differences between vehicles would have a significant 

impact on choice of testing procedures to evaluate real-world cold start emissions.  
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Figure 3.3 Cold start emission of CO (shaded blue trace) and NO (black trace) 

from a 1995 Ford Mustang. Left panel shows data from the Feb. 21 test and right 

panel, from the Feb. 23 test. Both tests show a long period of elevated CO 

emissions before CO emissions stabilize at ~ 170 ppmv. The CO and NO 

emissions display different temporal behavior. The NO displayed a secondary 

maxima about 200 seconds after an initial engine start NO spike. 

An example of VOC loading in exhaust, as measured by the PTR-MS, is shown in Figure 

3.4 for idling emissions from the Pontiac Vibe. Shown is a mass spectrum displaying instrument 

response versus the detected ion mass-to-charge ratio. The mass-to-charge ratio is interpreted as 

the molecular weight of the compound + 1. For example, benzene with a molecular weight of 78 

grams mol-1 is detected at m/z of 79. The PTR-MS does not respond to CO, CO2, NOx, or light 

molecular weight alkanes, so no response is given to alkane compounds in the C1 (methane) to 

C8 (octane), which are abundant in auto exhaust. The mass spectrum is dominated by aromatic 

compounds: benzene (m/z 79); toluene (m/z 93); C2-alkylbenzenes (m/z 107); C3-alkylbenzenes 
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(m/z 121); and C4-alkylbenzenes (m/z 135). Formaldehyde (m/z 31) and acetaldehyde (m/z 45) 

show significant responses in the mass spectrum. During testing, only benzene, toluene, C2-

alkylbezenes, C3-alkylbenzenes, formaldehyde, and acetaldehyde were measured, yielding data 

at ~ 1 Hz collection frequency.  

 

Figure 3.4 Proton-transfer-reaction mass spectrum of idling emissions from a 

Pontiac Vibe. Instrument response (Hz) is normalized to the reagent ion count 

rate. Given a 10 Hz/ppbv response factor for benzene, the benzene signal shown 

equates to a ~ 60 ppbv mixing ratio. 

When sampling for VOCs, problems were experienced that we attributed to condensation 

of water in the sample line, likely on the stainless steel particulate filter. The filter must have 

been a cold spot and occasionally accumulated water that caused losses of formaldehyde, which 

is water soluble. We experimented with heating the line differently, and consider the 

formaldehyde data good for the last three tests (test # 15, 16, 17) conducted on the Pontiac Vibe. 

Otherwise, formaldehyde was seldom observed. An example of PTR-MS data is shown in Figure 

3.5. The aromatic VOCs displayed good temporal correspondence with CO, but the acetaldehyde 

peak was delayed in time, and no formaldehyde was observed, a result we consider a sampling 

issue. Figure 3.6 shows improvement made because of better heating of the sample line. 



25 

Formaldehyde was detected, and the acetaldehyde peak has better correspondence with the 

aromatics. 

 

Figure 3.5 An example of Pontiac Vibe cold start VOC data from the PTR-MS, 

showing correspondence with CO mixing ratios in diluted engine exhaust during 

an engine cold start, delayed response of acetaldehyde, and absence of a 

formaldehyde peak. 
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Figure 3.6 An example of Pontiac Vibe cold start VOC data from the PTR-MS, 

showing correspondence with CO mixing ratios and better agreement of 

acetaldehyde and formaldehyde time traces with CO and aromatics as a result of 

improvements in sample line heating. 

3.3 Comparison of Organic Compound Molar Emission Ratios to MOVES 

The relative abundance of compounds measured in cold start emissions was compared 

with the speciation profiles used for cold start emissions in MOVES2014. Molar emission ratios 

were calculated with respect to toluene. These ratios were determined by calculating the area 

under the cold start peak as defined by the toluene time series. Table 3.3 lists the molar emission 

ratios used in MOVES compared with the average ratios measured in the cold start tests. In 

general, the emission ratio of benzene and C2-benzenes to toluene agreed reasonably well with 

emission ratios from the speciation profiles used in MOVES2014. However, measured cold start 

acetaldehyde emissions relative to toluene were a factor of 8 higher than used in MOVES. The 

limited data that we obtained for formaldehyde suggests cold start emissions are much higher 

than used in the MOVES speciation profile. Thus, emission of the air toxics formaldehyde and 
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acetaldehyde are likely significantly underestimated in vehicle emission inventories for cold 

climates. 

Table 3.3 Molar emission ratios with respect to toluene used in the MOVES2014 

speciation profiles for cold start emissions (E10 fuel) compared with average values 

determined from cold start experiments. Values listed are in units of %. 

Chemical Species 

Pre Tier 2 Tier 2 

MOVES 

1995 

Ford 

Mustang 

1996 

Honda 

Civic1 MOVES 

2015 

Subaru 

Forester 

2004 

Pontiac 

Vibe 

Formaldehyde  5.8 NA NA 3.9 NA 19 ± 612 

Acetaldehyde 8.0 64 ± 50 54 11 89 ± 17 86 ± 91 

Benzene 46 55 ± 4 55 44 75 ± 10 48 ± 22 

C2-alkylbenzenes 131 105 ± 2 132 122 68 ± 20 101 ± 45 
1 Only 1 test conducted 
2 Average of 3 tests 
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CHAPTER 4.  CONCLUSIONS 

Vehicle cold start emissions were measured in winter 2015 from four vehicles: a 2015 

Subaru Forester, a 2004 Pontiac Vibe, a 1996 Honda Civic, and a 1995 Ford Mustang GT. Fast 

response instrumentation (~ 1 Hz data collection rates) was used to measure concentrations from 

the tailpipe as the vehicle was started and left to idle. Cold start temperatures spanned from -

4.0°C to 10°C. Exhaust was sampled from the tailpipe using an ejector diluter. Measurements 

were made of CO, NO, benzene, toluene, C2-alkylbenzenes (sum of xylene isomers plus 

ethylbenzene), acetaldehyde, and formaldehyde. No clear trend with temperature was noted for 

CO or VOC emissions. For the Subaru Forester, the cold start pulse of elevated emission of CO, 

NO, and VOCs lasted only 60 seconds. The CO-to-NO molar ratios were about 654 ± 23% for 

the cold start period, significantly higher than running emission ratios of 5 to 7. The Pontiac Vibe 

also displayed a reasonably short period (approximately 60 seconds) of elevated emissions of CO 

and VOCs, but NOx emission remained elevated for a longer period. In contrast, the Ford 

Mustang displayed elevated CO and VOC emissions for about 600 seconds.  

Emission data for VOCs were compared with the MOVES2014 speciation profiles used 

to represent cold start emissions for Tier 2 and pre Tier 2 vehicles using E10 fuel. We compared 

measured molar emission ratios to toluene with those reported for speciation profile #8757 (Tier 

2) and #8751a (pre Tier 2), as listed in the EPA SPECIATE 4.4 database. We found that 

benzene-to-toluene and C2-alkyllbenzene-to-toluene molar emission ratios agreed reasonably 

well with the speciation profiles. However, the acetaldehyde-to-toluene molar emission ratio was 

approximately a factor of 8 larger. The highest acetaldehyde-to-toluene emission ratios were for 

the Forester (0.89 ± 17%) and Pontiac Vibe (0.86 ± 91%) compared with the speciation profile 
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value of 0.11. Formaldehyde was difficult to measure in exhaust, likely due to losses in the 

sampling apparatus. Reasonable formaldehyde data were obtained in three tests with the Pontiac 

Vibe, indicating a formaldehyde-to-toluene molar ratio in the cold start pulse of 0.19 ± 61%, 

approximately a factor of 5 higher than the speciation profile. Our data suggest that emissions of 

the air toxics acetaldehyde and formaldehyde are significantly underestimated in MOVES2014 

parametrization of cold start emissions for E10 fueled vehicles. 
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